2,059 research outputs found

    Circular 66

    Get PDF
    Phosphorus (P) along with nitrogen (N) and potassium (K) comprise the three macronutrients most frequently added as fertilizer for growing plants. In Alaska soils, P is often the second most limiting nutrient after N. A proper supply of plant-available P is important for root development and plant growth. To supply P to growing crops, the soil not only must contain enough P, but it must be in a form which is available for utilization by the plant. The status of P in the soil has an important influence on fertilization practices. Agricultural soils of Alaska vary considerably, not only in their total content of P and its distribution (form it occurs in), but also in the characteristics for sorption or fixation of P (Ping and Michaelson, 1986). Forms of P in the soil will affect its availability. The P-sorption character of soils will affect P fertilizer reactions in the soil and thus influence the amount of P fertilizer necessary and carry-over effects of applied P. It is essential that P soil tests and their interpretation be tailored for soils with similar P reactions. A useful P soil test must be based on both correlation of test values to plant growth and to field calibration of soil test values with yield

    Circular 81

    Get PDF

    Characterization of Low Temperature Soluble Polyaniline

    Get PDF
    Because the charging of polyaniline films occurs in the bulk of the material rather than exclusively at the polymer-electrolyte interface, the use of thick polymer films for battery applications is justifiable. Here, we present a method for producing soluble polyaniline which can be cast to form free-standing films. Investigation by scanning electron microsopy (SEM) has shown that these films are significantly more compact than those made by standard electropolymerization

    Plant sphingolipids: their importance in cellular organization and adaption

    Get PDF
    Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner

    Data-driven assessment of eQTL mapping methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of expression quantitative trait loci (eQTL) is a potentially powerful way to detect transcriptional regulatory relationships at the genomic scale. However, eQTL data sets often go underexploited because legacy QTL methods are used to map the relationship between the expression trait and genotype. Often these methods are inappropriate for complex traits such as gene expression, particularly in the case of epistasis.</p> <p>Results</p> <p>Here we compare legacy QTL mapping methods with several modern multi-locus methods and evaluate their ability to produce eQTL that agree with independent external data in a systematic way. We found that the modern multi-locus methods (Random Forests, sparse partial least squares, lasso, and elastic net) clearly outperformed the legacy QTL methods (Haley-Knott regression and composite interval mapping) in terms of biological relevance of the mapped eQTL. In particular, we found that our new approach, based on Random Forests, showed superior performance among the multi-locus methods.</p> <p>Conclusions</p> <p>Benchmarks based on the recapitulation of experimental findings provide valuable insight when selecting the appropriate eQTL mapping method. Our battery of tests suggests that Random Forests map eQTL that are more likely to be validated by independent data, when compared to competing multi-locus and legacy eQTL mapping methods.</p

    Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    Full text link
    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.Comment: 5 pages, 6 figure

    Unsatisfiability proofs for distributed clause-sharing SAT solvers

    Get PDF
    Distributed clause-sharing SAT solvers can solve problems up to one hundred times faster than sequential SAT solvers by sharing derived information among multiple sequential solvers working on the same problem. Unlike sequential solvers, however, distributed solvers have not been able to produce proofs of unsatisfiability in a scalable manner, which has limited their use in critical applications. In this paper, we present a method to produce unsatisfiability proofs for distributed SAT solvers by combining the partial proofs produced by each sequential solver into a single, linear proof. Our approach is more scalable and general than previous explorations for parallel clause-sharing solvers, allowing use on distributed solvers without shared memory. We propose a simple sequential algorithm as well as a fully distributed algorithm for proof composition. Our empirical evaluation shows that for large-scale distributed solvers (100 nodes of 16 cores each), our distributed approach allows reliable proof composition and checking with reasonable overhead. We analyze the overhead and discuss how and where future efforts may further improve performance

    Place attachment in deprived neighbourhoods: The impacts of population turnover and social mix

    Get PDF
    This paper examines the determinants of individual place attachment, focussing in particular on differences between deprived and others neighbourhoods, and on the impacts of population turnover and social mix. It uses a multi-level modelling approach to take account of both individual- and neighbourhood-level determinants. Data are drawn from a large sample government survey, the Citizenship Survey 2005, to which a variety of neighbourhood-level data have been attached. The paper argues that attachment is significantly lower in more deprived neighbourhoods primarily because these areas have weaker social cohesion but that, in other respects, the drivers of attachment are the same. Turnover has modest direct impacts on attachment through its effect on social cohesion. Social mix has very limited impacts on attachment and the effects vary between social groups. In general, higher status or more dominant groups appear less tolerant of social mix

    Desaturase (Patent US 2003/0152983 A1)

    Get PDF
    This invention relates to cDNA sequences encoding DELTA5-fatty acid desaturases comprising the sequences shown in SEQ.1 and SEQ.2
    • ā€¦
    corecore